
NISTIR 4411

THE NIST STEP
CLASS LIBRARY
(STEP INTO THE
FUTURE)

Michael J. MeLay
Katherine C. Morris

U.S. DEPARTMENT OF COMMERCE
National institute of Standards
and Technology

Center for Manufacturing Engineering

Gaithersburg, MD 20899

U.S. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director

NIST

NISTIR 4411

THE NIST STEP
CLASS LIBRARY
(STEP INTO THE
FUTURE)

Michael J. McLay
Katherine C. Morris

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards

and Technology

Center for Manufacturing Engineering

Gaithersburg, MD 20399

August 1990

U.S. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director

The NIST STEP Class Library1

(STEP Into The Future)

Michael J. McLay (mclay@cme.nist.gov)

Katherine C. Morris (kc@cme.nist.gov)

Factory Automation System Division

National Institute of Standards and Technology

"Any meaningful exchange of utterances depends upon the prior existence of an

agreed set ofsemantic and syntactic rules. The recipients ofthe utterances shall use

only those rules to interpret the received utterances if it is to mean the same as that

which was meant by the utterer."

--Helsinki Principle

Key Words

STEP, PDES, CALS, C++, data exchange standards, National PDES Testbed,

CAD, CAM, CAPP, IGES, STEP Class Library, Express Language

Abstract

This paper describes a C++ class library that implements the STandardfor the

Exchange ofProduct Model Data (STEP). The STEP Class Library (SCL) is under

development at the National Institute of Standards and Technology as pan of the

National PDES Testbed< It provides a core set of classes for tools used to validate

the STEP conceptual data models and for STEP based application prototypes. The

library is also intended to facilitate the development of STEP compliant

applications. The current version of the library provides a file exchange mechanism

based on a protocol defined by STEP. Consequently, users of the class library will

not have to create an input/output mechanism for STEP.

The paper provides an introduction to STEP and the conceptual schema language,

Express, in which STEP models are defined. The supporting classes that provide

the STEP compliant input/output mechanism and the mapping between the Express

specification and the C++ classes are described. The paper concludes with

descriptions of some applications that use the class library and a discussion of future

directions for the library.

1. The library and its source code, are under development by the National Institute of Standards and

Technology (NIST), a U.S. government agency. As with all software developed by the government, the

library is not subject to copyright restrictions.

Reprinted from the C++ at Work *90 conference proceedings with permission granted by The C++ Report.

(No approval or endorsement of any commercial product by the National Institute of Standards and Technology

is intended or implied.)

1.0 Introduction

This paper describes the STandardfor the Exchange ofProduct Model Data
1

(STEP) [NCGA90] [Smith89] and the STEP Class Library(SCL). STEP is a

conceptual specification that forms a basis for communicatingproduct information

(e.g., shape, materials, electrical functions, part numbers, etc.). SCL provides C++
classes that can be used to implement applications such as electrical and mechanical

CAD/CAM tools, Computer Aided Process Planning (CAPP) tools, manufacturing

systems, product configuration control systems, and engineering analysis tools.

The STEP Class Library (SCL) defines classes and member functions to represent

the product information defined by STEP. The library is to be used as a basis for

the development of tools for testing the validity of the STEP conceptual data models

and as a basis for a prototype implementation of the STEP Data Access Interface

Specification (SDAIS) [Briggs90]. These applications are able to use SCL classes

directly or as a link between a proprietary system and the STEP exchange

mechanism. For a system that provides its own STEP interface, SCL can be used

as a reference standard for conformance testing.

Following a brief discussion of STEP, the paper provides a short introduction to

Express, the conceptual modeling language used for STEP. Next the components

of SCL are described along with examples of Express product information

definitions translated into C++ classes. Finally, examples ofprojects using SCL are

described, and the paper concludes with a discussion of SCL development to date

and thoughts on future directions.

2.0 The Impact of STEP

Although computer technology has expedited many business transactions, sharing

product information within and between organizations has been problematic. In

1979 the National Institute of Standards and Technology (NIST)2 , in cooperation

with representatives from industry, began investigating solutions to this problem

[Bloom89]. The original effort resulted in the Initial Graphic Exchange

Specification (IGES) 3[NCGA90] [Smith89], which is suitable for exchanging

information among CAD systems. STEP is an outgrowth of IGES and is intended

to provide a basis for sharing product information at all levels and stages in a

product’s life cycle. The key differences between IGES and STEP are the breadth

1. STEP is a project of the International Organization for Standardization (ISO) Technical Committee on

Industrial Automation Systems (TC 184) Subcommittee on Manufacturing Data and Languages

(SC4).[NCGA90] [Smith89]

2. The Omnibus Trade Act of 1988 changed the mission of the National Bureau of Standards (NBS) to include

promotion of technology transfer between government labs and private industry. This redirection prompted

the name change to the National Institute of Standards and Technology (NIST). With the change in mission,

NIST is now pursuing an even more active role in promoting commerce in the U.S.

3. Versions 1.0, 3.0 and 4.0 of IGES have been adopted by the American National Standards Institute (ANSI)

as ANSI Y14.26M4981, ASME/ANSI Y14.26M-1987 and ASME/ANSI Y14.26M-1989, respectively.

Page 2 The NIST STEP Class Library

2.1

of the information covered and the switch in focus from merely exchanging data to

sharing information.

One of the lessons of the IGES effort is that transmitting data is not the same as

transmitting the information necessary to fully describe a product. The Helsinki

Principle, quoted at the opening of this paper, points out what is missing. Without

the “agreed set of semantics and syntactic rules”, exchanging data is meaningless.

STEP expanded on IGES by specifying a consistent use of the semantics of product

data in addition to the specification of the data.

Initially, the STEP development effort focused on building conceptual data models.

The requirement to support the models of existing CAD and CAM systems made

this task difficult because the models overlapped and conflicted. For example, a

curve through space can be represented as a b-spline, as a list of curve segments, or

as a non-uniform-rational b-spline (NURB). The STEP modelers undertook the

very difficult job of defining mappings between the different representations of the

same information. STEP currently consists of a group of clearly and formally

defined conceptual data models and a physical exchange protocol based on these

models [Alte88b]. Ultimately, the conceptual models will be integrated into a single

model, and the exchange protocol will take other forms such as a standard interface

to a shared database and/or common memory.

STEP is an ambitious standardization effort that involves several hundred

individuals in twenty-six countries. The initial draft of STEP [Smith88], totaling

over 6000 pages, was submitted to ISO in December 1988. The draft specification

is divided into twenty-eight application areas, providing comprehensive coverage

of product-related data from geometry and structural tolerances to electrical design

and configuration management. When translated into C++, the draft STEP model

produces over 1300 class definitions that interweave to ensure consistent use of data

and semantics in describing a product.

The National PDES 1
Testbed

2 was established at NIST in 1988 as a neutral testing

site to provide national leadership in the STEP development and testing effort. The

facility is used to test the quality of the evolving conceptual data models [Mitch90]

and to investigate the suitability of new technologies to the application areas

covered by STEP [Fowler90].

Motivation for the NIST STEP Class Library

The principal objectives for creating the STEP Class Library (SCL) are to support

the development of conceptual data model testing tools, prototype applications, and

eventually, conformance testing. A secondary objective of developing this library

is to reduce the economic barrier of introducing STEP into the work place and,

1. Product Data Exchange using STEP (PDES) refers to the United States development activity in support of

STEP. NIST serves as the Secretariat of the IGES/PDES Organization, which coordinates the United States

activity.

2. Funding for the Testbed has been provided by the Department of Defense’s Computer-Aided Acquisition

and Logistic Support (CALS) Office.

The NIST STEP Class Library Page 3

consequently, to accelerate the rate of growth of STEP-compliant applications. To
facilitate application development, the STEP data exchange mechanism is built into

member functions in the class library, thus eliminating the need to rewrite this code

for each application.

In addition, the use of a standard class library can also reduce ambiguities that could

potentially be read into the specification. With over 6000 pages in the specification,

it is likely that some misinterpretation could occur. The value of a reference library

in simplifying implementation and ensuring conformance was proven with the X
Window System Project [Scheifler88]. The rapid acceptance and almost universal

conformity to the X Window System protocol can be attributed largely to the fact

that the protocol was completely covered by a layer of C library calls. For the X
Window System, the reference implementation also provided a convenient

mechanism for the testing of protocol implementations in other languages. SCL has

been developed with the hope that it will have a similar impact on STEP
implementation and acceptance.

3.0 The Approach to Implementing STEP

The STEP conceptual model is specified in the language Express [Schenck90].

Express is a conceptual modeling language that defines how data are interrelated.

While Express resembles many computer languages and has an LRN(l) syntax, it

is not an executable language. Several parsers for the language are available to

check the syntax of conceptual data models written in Express and to serve as front

ends for translators between Express and other languages. At NIST an Express

parser is used to translate some of the constructs of Express into SQL (Structured

Query Language) [ANSI86], Smalltalk [Goldberg85], and C++ [Ellis&Strou90].

Eventually the standard will provide common memory and shared database

implementation rules, but for now the definition is limited to a single exchange

format -- that of an exchange file.

3.1 The Express Language as a Conceptual Modeling Language

The components of the Express language addressed in this version of SCL are

schemas, types, entities, and constraints. The following sections describe each of

these components in more detail.
1 The examples used in the balance of the paper

are derived from schemas in the draft specification [Smith88].

3.1.1 Schema

A schema is a collection of the information needed to describe a model in the terms

of a given discipline. A schema consists of types, entities, and constraints. They

may be nested and/or include other schemas. A collection of schemas is needed to

represent the information required for a complete product model.

1. Functions and procedures will be mapped into C++ in a future release of SCL.

Page 4 The NIST STEP Class Library

3.1.2

3.1.3

Type

In Express the concept of type is similar to that of a data type in a programming

language. Express contains a limited set of built-in types from which other types

can be defined. For example, the following statement declares inspectionjprocess

to be of type STRING.

TYPE inspection_process = STRING;

END_TYPE;

Express also provides enumerated types in a form similar to C and C++. The

position in a list of enumerated items determines the value associated with the

items. The value of the first item is less than the second; the second is less than the

third, etc.. The example below is an enumerated type in Express.

TYPE coordinate_system_type = ENUMERATION OF

(rh_rectangular, rh_cylindrical, rh_spherical,

lh_rectangular, lh_cylindrical, lh_spherical);

END_TYPE;

Several other constructs for type definitions are available for Express but will not

be discussed in this paper.

Entity

An entity represents a data structure similar to a table in a relational database, a

struct in a C program, or a class in a C++ program. Entities are organized

hierarchically; an entity can have zero or more subtypes and/or supertypes . Three

types of attributes are the components of entities: explicit, inherited, and derived.

Explicit and inherited attributes indicate the set of data needed to represent an

instance of an entity. Explicit attributes are specified inside of an entity declaration

just as a member is declared inside of a C++ class definition. An inherited attribute

is specified in a supertype entity in Express just as a member is inherited from a base

into a derived class in C++. Finally, a derived attribute is calculated from other

attributes by using an algorithm defined in the conceptual data model. In C++ a

member function is the closest construct to a derived attribute. In the example

shown in Figure 1, the explicit attribute localcoordinate_system would be an

inherited attribute in the entity cartesianjpoint.

The NIST STEP Class Library Page 5

3.1.4

ENTITY geometry

SUPERTYPE OF (point XOR
vector XOR
curve XOR
surface XOR
coordinate_system XOR
transformation XOR
axis_placement);

local_coordinate_system : OPTIONAL coordinate_system;

axis : OPTIONAL transformation;

END_ENTITY;

ENTITY curve

SUPERTYPE OF (line XOR
conic XOR
bounded_curve XOR
offset_curve)

SUBTYPE OF (geometry);

WHERE
arcwise_connected(curve);

are_iength_extent(curve) > 0;

END_ENT!TY;

ENTITY line

SUBTYPE OF (curve);

pnt ;cartesian_point;

dir direction;

WHERE
coordinate_space(pnt) = coordinate_space(dir);

coordinate_spaee(line) - coordinate=space(pnt);
arcjength_extent(line) > 0;

END_ENTITY;

ENTITY point

SUPERTYPE OF (cartesian_point XOR
point_on_curve (* XOR
point_on_surface

point_on_surface *)

)

SUBTYPE OF (geometry);

END_ENTITY;

ENTITY cartesian_point

SUBTYPE OF (point);

x_coordinate : REAL;
/.coordinate : REAL;

z_coordinate : OPTIONAL REAL;
DERIVE
space : INTEGER ;= coordinate_space(z_coordinate);

END.ENTITY;

Figure 1. Example of Express entity definitions from the Geometry model.

Constraint

Constraints both internal to an entity and between entities can be represented in an

Express conceptual data model Internally, an entity may have its attributes

Page 6 The NIST STEP Gass Library

3.2

constrained in terms of uniqueness and existence through the use of key words in

the entity definition. For example, the entity product_assembly-definition in Figure

2 uses the key word UNIQUE to constrain the attributes documentjiumber and

schematic-reference. A where clause can be used to further constrain the domain

of an attribute’s value. In the example, the entity is constrained by the where clause

that requires that the entity not be in the component_list.

ENTITY product_assembly_definition;

document_number : STRING;

schematic_reference : schematic;

componentjist : LIST [1 :#] OF component_select;

UNIQUE

document_number;

schematic_reference;

WHERE

NOT (product_assembly_definition IN componentjist);

ENDJENTITY;

Figure 2. Example of constraints on an entity from the PSCM Model

In addition to these constraints, which are applicable within an entity, there are

constraints specified through rules. Rules are used to describe the relationships

among the instances of entities. Figure 3 includes a rule named

product_item_and_version that illustrates the nature of such constraints. This rule

ensures that aproduct_item is only associated with a singleproduct_item_version.

The product_item_and _version rule is simple but carries important semantics

about the relationship between the entities productJtem andproduct_item_version.

RULE productJtem_and_version FOR (productJtem, productJtem_version);

IF (instantiation(productJtem_version, productjtem) <> 1) THEN VIOLATION;

(* A PRODUCTJTEM_VERSION is associated with one PRODUCTJTEM *)

ENDJF;

END__RULE;

Figure 3. Example of a rule from the PSCM Model

C++ as an Implementation Language

C++ was chosen as the language of implementation for the STEP Class Library for

several reasons. First, a language that supports the object paradigm

[Cox87][Kim89][Meyer88] was desired. The STEP conceptual models are

hierarchical, and the concept of inheritance is fundamental to their organization.

Also, a language that would be able to handle large and complex data files or

databases without paying a large performance penalty was needed. Another

consideration was the need for an implementation language that was compatible

with a wide variety of software packages (compilers, databases, debugging tools,

The NIST STEP Class Library Page 7

compatible graphics packages, etc.). Finally, it was desirable to use a standardized

language or at least a language that had the promise of becoming a standard soon
1

.

Portability and modularity are necessities when trying to implement a standard for

data exchange.

4.0 The STEP Class Library Architecture

SQL is a collection of several component libraries. The STEP Schema Class

Library holds container classes that are directly mapped from the STEP models.

The STEP Core Class Library provides the context-independent data access

mechanisms for the STEP data and the mechanisms for capturing semantic

information in the STEP schemas. The STEP Data Probe Class Library supports

the context-independent browsing and transport control to the STEP Schema Class

Library. These three low level libraries form the foundation for the future STEP
Data Access Interface Specification (SDAIS) library. SDAIS[Briggs90] will

provide a uniform interface for applications to create, retrieve, and manipulate

STEP data. The STEP Data Probe Class Library and the SDAIS are in the design

stage and are not covered in this paper.

4.1 STEP Schema Class Library: Translation of the Conceptual Model

The STEP Schema Class Library is the set of files that result from the translation of

a STEP schema. These files are generated automatically using the Fed-X Toolkit

[Clark90] for translating Express and are producible from an Express schema. The

programfedexjplus, which is a backend to Fed-X, takes a conceptual data model

written in Express as input and generates three C++ files for each schema. The C++
code in these files provides the class definitions and member functions for STEP
entities needed by an application program.

4.1.1 Schemas

When aSTEP Schema Class Library is generated from an input file ofExpress text,

each schema of the Express conceptual data model generates the following files: a

header file of class definitions, a library file of class functions, and an initialization

file. The classes defined in the header file correspond to the entities and types

defined in that schema. Presumably, any application using any one of these entities

will need to use several of the entities in the schema; therefore, they are all placed

in the same file. If the schema includes any other schemas, the header files for the

other schemas are included, using a #include statement, in the owning schema’s

header file. The initialization file contains a function that must be called to initialize

a program to use the particular schema. The files are named after the schema that

they represent.

1. The ANSI X3J 16 committee on “C++ Programming Language” was formed in December 1989. An initial

draft based on the AT&T C++ Reference Manual is currently under review by the committee.

Page 8 The NIST STEP Class Library

4.1.2

Express schemas are not completely self-contained. Figure 4 shows the schemas

defined in the original draft of STEP. In order to create a global schema, references

to entities from external schemas must be resolved. To implement this in C++ the

header files that represent the external schemas containing the referenced entities

are included in the schema’s header file. An application based on SCL includes the

header files for the schemas needed by an application and link in the corresponding

archive files. The SCL file structure ensures that the references to the schema are

resolved.

resources life__cycle

applications geometry

topology shape

desigReshape nominal_shape

solids shapejnterface

features tolerances

material presentation

productjmanifestation drafting

mechanical.product pscm

aec aec__core

ship_structure electrical

electricaljunctional electricaltic_schema

iep analysis

fern data transfer

Figure 4. Schemas from STEP draft

Entities

Every entity defined in an Express file is mapped into a corresponding class in C++.

The supertype/subtype relationship ofExpress also maps into the base class/derived

class relationship of C++. Express entity names are not case sensitive. To ensure

that the names are consistently translated into C++ classes, the following rules are

applied in the translation.

1. All characters in a name are translated to lower case.

2. Then the first letter in the name and any letter immediately following an

underscore character are made upper case.

The assumption is made that the Express schemas are logically divided so that no

naming conflicts between schemas will arise in application software developed

using these libraries. Figure 5 shows the header file of C++ class definitions that is

created whenfedexj)lus uses the Express code from Figure 1 as input.

The NIST STEP Class Library Page 9

#include "definedtypes.h"

#include "STEPentity.h"

class Geometry : public STEPentity
{

protected:

STEPentity * Jocal_coordinate_system
;

// OPTIONAL
STEPentity

4
_axis

;
// OPTIONAL

public:

Geometry ();

“-Geometry ();

char *Name () { return "Geometry";

}

int opcode () { return 1 ;

}

class Coordinate_System* local_coordinate_system()

{ return (dass Coordinate_System*) _local_coordinate_system;

}

void local__coordinate_system (dass Coordinate_System* x)

{
_local_coordinate_system = (STEPentity *)x;

}

class Transformation* axis() { return (dass Transformation*) _axis;

}

void axis (class Transformation* x) { _axis = (STEPentity *)x;

}

};

class Curve : public Geometry
{

protected:

public:

Curve ();

-Curve ();

char ‘Name () { return "Curve";

}

int opcode () { return 4 ;

}

dass Line : public Curve {

protected:

STEPentity * _pnt

;

STEPentity * _dir

;

public:

Line ();

-Line ();

char ‘Name () { return "Line";

}

int opcode () { return 24
;

}

class Cartesian_Point* pnt() { return (class Cartesian_Point*) _pnt;

}

void pnt (class Cartesian_Point* x) {
_pnt - (STEPentity *)x;

}

class Direction* dir() { return (dass Direction*) _dir;

}

void dir (dass Direction* x) { _dir = (STEPentity *)x;

}

};

class Cartesian_Point : public Point {

protected:

real _x_coordinate

;

real _y_coordinate
;

real _z_coordinate
;

// OPTIONAL
public:

Cartesian_Point ();

~Cartesian_Point ();

char *Name () { return "Cartesian_Poinr;

}

int opcode () { return 10 ;

}

real x_coordinate() { return (real
)
_x_coordinate;

}

void x_coordinate (real x) { _x_coordinate - x;

}

real y_coordinate() { return (real) _y_coordinate;

}

void y_coordinate (real x) {
_y_coordinate = x;

}

real z_eoordinate() { return (real
)
_z_eoordinate;

}

void z_coordinate (real x) f
_z_coordinate = x;

}

};

Figure 5. Example of entities from Geometry schema translated into C++

Page 10 The NIST STEP Class Library

4.1.3 Attributes

All Express attributes are implemented as C++ classes regardless of the data type

of the attribute. Built-in Express data types are represented direcdy in the

corresponding entity class; otherwise the attribute is implemented as a pointer to the

appropriate C++ class.

4.1. 3.1 Explicit Attributes

For each explicit attribute in an Express model there is a corresponding data

member in the protected section of the C++ class definition. In addition, there are

a pair of access functions for each data member: one for assignment and the other

for retrieval of the data. In an attempt to isolate applications from changes to the

conceptual model a data member is assigned or retrieved through access functions

rather than being assigned or retrieved directly. This eliminates the maintenance

problem that occurs when an application’s software assigns or retrieves an attribute

directly. Using an access function eliminates the need to update every reference to

the data member in the software when the implementation details of the data

member are altered. This approach increases schema independence and facilitates

modularity of the software. From the example in Figure 5, the access functions

real x_coordinate() { return (real
)
_x_coordinate;

}

and

void x_coordinate (real x)
{
_x_coordinate = x;

}

are defined for the xcoordinate attribute of the Cartesian_Point entity. Similar

functions are defined for the ycoordinate and zcoordinate attributes.

4.1.3.2 Inherited Attributes

Inheritance of attributes in Express resembles the inheritance supported by C++.

For the time being it is sufficient to represent inherited attributes through the

standard C++ mechanisms; however, translating the other types of inheritance

defined by Express into C++ is also being investigated. This issue is addressed later

in this paper. In Figure 5 the access functions

class Transformation* axis() { return (class Transformation*) _axis;

}

and

void axis (class Transformation* x) { _axis - (STEPentity *)x;

}

are inherited down into the Cartesian_Point class as inherited attributes.

4.1. 3.3 Derived Attributes

Derived attributes are implemented as member functions.

The NIST STEP Class Library Page 11

4.2

4.2.1

STEP Core Class Library: Context Independent Classes

The STEP Core Class Library (SCCL) is a collection of context independent class

definitions used by the schema dependant classes that are found in the STEP
Schema Class Library. Classes found in the SCCL include a common base class for

all STEP entity class definitions and classes to maintain meta information from the

schemas. After a brief description of some problems solved by the SCCL, this

section will conclude with definitions of the major classes in this library.

A problem with any translation of a conceptual model into an implementation

language is in the translation of the semantics conveyed by the conceptual model.

The symbolic names used in a model store some of the meaning intended by the

modelers. Consider the following type definition.

TYPE inches = INTEGER;

ENDJYPE;

To a human reading a conceptual model, the term inches conveys more information

than the term integer. At first glance, it may seem as if inches can simply be

translated to an integer and all would be well; however, this approach loses the

semantics captured by the term inches. Furthermore, many of the tools that are

being developed explicitly require that the symbolic information be available.

To capture the symbolic information several classes have been created. The

STEPentity class captures information pertaining to the entities of the conceptual

model; the STEPattribute class handles the descriptions of the entity’s attributes.

The STEPenumeration class currently stores the symbolic name of enumerated

values. A class to retain the definitions types specified in the conceptual data

models is the subject of future work.

The STEPentity Class

Meta information for every Express entity is stored in the base class STEPentity .

This class is the root of each tree of classes corresponding to the entities in the

Express conceptual data model. The data members and member functions for the

class STEPentity are:

Data Members Description

instance_id

STEPfile.id

reference_count

a global identifier represented as an integer assigned to

each instance of an entity

an identifier assigned to an instance in the input STEP
exchange file

an integer referring to the number of references to a

particular instance

application_marker an integer reserved for use specific to an application

attributes the list of pointers to the standard data members

specified in the STEP conceptual data model

Page 12 The NIST STEP Class Library

Member Functions Descriptign

Name

opcode

STEPwrite

beginSTEPwrite

STEPread

the virtual function that returns the entity name for an

instance of a class.

the virtual function that returns an integer assigned to

represent a STEP entity'

prints out an entity using the STEP exchange protocol.

prints out any unprinted entities referenced by the entity-

being printed.

reads an input stream of data in the STEP exchange

format and assigns the values to the data members of the

class instance.

The exchange protocol implemented by STEPwrite and STEPread in the current

version of SCL is defined in an ISO document [AlteSSa]. The ISO TC18- SC4
WG1 working group, which is investigating mechanisms for sharing data between

applications, developed the protocol. Eventually, the standard will provide

implementation rules for common memory and shared databases, but for now the

definition is limited to this single exchange format.

A key design goal for SCL was to isolate the implementation of the exchange

protocol from the class definitions in the STEP Schema Class Library. By doing

so, it is possible to change the exchange protocol without disturbing code that uses

the STEP Schema Cass Library. This also hides the details of the protocol from

the application developers. Tne following details of the current protocol should

never be seen directly by the developers. It has been included for reference

purposes only.

The exchange file has a syntactic format based on an Express schema. Tne

file is a series of sets of data values. The format of the dam sets is based directly on

the entity definitions of the corresponding conceptual dam model. Figure 6 shows

an example of the file exchange format. Tne numbers preceded by the symbol @
are instance identifiers, which am assigned to the dam member STEPflleJd by the

member function STEPread .

STEP:

HEADER:
=LE_DEM1TF)CATKDN nBMPRT2' I7 990 0* 2^ * 3 3C * T LMCKEE' - ^COMPANY 3' * ‘ /POES'.

F1E_DESCRIP~!CS 'S IMPLE PART

;

M?_LEVELTUSER DEFINED ENTITIES ONlW
ENDSEC:

DATA;

©*9~C RECTOS :.7C7' ^6-5^503-2* 36-5^503*2* 2.r

#2o=£XREcroN . -:T07‘:'5^i5C3*2*a:.7:-'C6-5^5O3*2*a:,

:

© 2* =C = =CTOs :0000003c 33635 * 5

@22*GAKTESAN_°OiNT ..0 3625.2* -379*9943542*8047.* * .52999973297* *5*-*

©23®TRANSFOF„WAT:ON; **9*2C*2* *22.

@2«-COCrONATE_SYSTBYl *22

Figure 6. Excerpt from a STEP exchange file based on the Geometry model

The NIST STEP Gass Library Page 13

4.2.2

4.23

An issue of concern in this implementation was whether to make the STEPentity

class a virtual or base parent of the schema classes. Currently the STEPentity class

is implemented as a root node of each entity hierarchy. However, a schema is not

required to be a true hierarchy; therefore, it would be more general to implement the

class as a virtual parent of each STEP class. There are several reasons why this

implementation was not chosen. First, it is less generic in the sense that the ability

to cast a pointer to a virtual parent to a pointer to the appropriate class is not built

in to C++. Second, virtual classes were first supported in C++ version 2.0 which

supports multiple inheritance. Version 1.2 ofC++ does not support this, and several

of the database systems being considered for incorporation into the software

currently run only with Version 1.2. The problem of a non-hierarchical entity

structure has not been a concern with the models used to date.

STEPattribute

The data member attributes of the class STEPentity is a list of pointers to data

members that are STEP attributes. These pointers are represented by the class

STEPattribute . A STEPattribute object contains the following data members:

Data Members DescriDtion

shared a Boolean value indicating whether the attribute is also

usable by another instance of a STEPentity

nullable a Boolean value indicating whether the attribute needs to

be populated for the instance to be a valid STEP instance

type an enumerated value that indicates the data type of the

attribute

name the name of the attribute as specified in the STEP
conceptual data model

Ptr the pointer to the data member representing the attribute

type_name name of a type as defined in the Express conceptual data

model

Member Functions DescriDtion

aread reads in an attribute from an istream in the format

specified by the STEP exchange file

screen, read reads in an attribute’s value from standard input

aprint prints out an attribute in STEP exchange format

STEPattributeList

The STEPattributeList class is the key to providing common functionality for

members of the STEPentity class. A STEPattributeList is a list ofSTEPattributes.
The list can be used to traverse the STEP data members of any entity instance. For

example, STEPwrite can traverse the STEPattrrtibuteList for any STEPentity and

print the value of each element in the list in the format of the STEP exchange file.

Page 14 The NIST STEP Class Library

The STEPwrite function is only defined in one place rather than being redefined for

each entity. The STEPattributeList could also be used to print the names of the

attributes.

4.2.4 STEPenumeration

Enumerated data types are handled by the base class STEPenumeration. This class

maintains a list of the symbolic values that an enumeration is able to assume. An
enumeration has two constructors: one accepts an integer value and the other takes

a character string, which is the enumeration’s symbolic value. The constructors

check to make sure that the given value is in the specified domain. It may seem that

an enumerated type in the conceptual data model should be directly translated to an

enumerated type in C++; however, this translation loses the semantics of the

enumerated type. The symbolic values of the enumeration are both necessary and

desirable. These values are needed to interpret a STEP exchange file in which

enumerated values are represented by their symbolic names. When building

interactive data editors that prompt the user for values, it is desirable to have such

information available.

5.0 Example Applications

Several prototype applications have been started using SGL and several others are

in the planning stage. The following sections describe a few of these first attempts

at using the library to implement STEP.

5.1 STEP Data Probe

The STEP Data Probe is being developed in the National PDES Testbed to support

validation testing of the STEP model. Test data will be created, viewed, changed,

and deleted using the STEP Data Probe. The probe can also be used to browse the

STEP schemas.

In some cases, using the probe directly will have limited practicality, such as when
dying to locate a specific point or edge in a large mechanical structure. In these

circumstances the probe win be integrated into higher level viewing aids, such as a

solid model browser. In this configuration, the Data Probe will be given a reference

from the graphic browser when an edge or a comer is selected. The probe will

present a view of the STEP data that corresponds to the item that was graphically

selected. In this role the probe will provide a practical and consistent mechanism

for viewing STEP data. To incorporate the STOP Data Probe functionality into an

application, the developer will link in the STEP Data Probe Class Library (see

Section 4.0).

5.2 IGES to STEP Translator

Many existing CAD systems currently support IGES and not STEP; therefore, it

was useful to create a translator between the two specifications. The resulting tool

provides a convenient mechanism for generating data for testing the STEP
conceptual data models.

The NIST STEP Class Library Page 15

The translator includes a parser for the IGES file format and classes that represent

IGES entities. When the IGES file is parsed, the data are placed into a list of

instances of the IGES classes. Each IGES class has a member function called

makepdes that translates the IGES entity into the corresponding STEP entities.

Figure 7 shows the definition of a class representing the IGES constructLineEntity.

Figure 8 shows the definition of the makepdes virtual member function that does the

translation into the corresponding STEP objects. The code that cycles through an

IGES file and builds the STEP file uses a linked list class, a string class, fewer than

100 lines of additional code in parser routines. The function translate , shown in

Figure 9, uses the virtual function makepdes to cycle through the various IGES

objects and translate them into STEP objects.

class LineEntity : public DeNode {

public:

realxl;

real yl;

realzl;

realx2;

real y2;

realz2;

void populateparameters(String);

void makepdesO;

};

Figure 7. Example of the C++ representation of an IGES entity

void LineEntity:: makepdesO {

PolyLine *line = new PolyLineQ;

Transformation *local_transformation;

if (this->transformation_matnx ~0) local_transformation = NULL;
else

local_transformation = ((TransformationMatrixEntity*)

mylist[this->transformation_matrix])->PdesTransformation;

line->axis = local_transformation;

CartesianPoint *point = new CartesianPointO;

point->x_coordinate = xl;

point->y_coordinate = yl;

point->z_coordinate = zl;

line->points.push(point);

pdeslist.push(point);

point = new CartesianPointO;

point->x_coordinate = x2;

point->y_coordinate = y2;

point->z_coordinate = z2;

line->points.push(point);

pdeslist.push(point);

pdeslist.push(line);

}

Figure 8. Example of makepdes member function for an IGES entity

Page 16 The NIST STEP Class Library

void ftanslate{){

int index;

DeNode *entry = mylistiFirstO;

while (mylisLAtHndO != 1) {

index - entry->sequence_number.

entry ~>makepd.es0

;

if (index != enny->sequence_number) entry = mylistJndex(index);

entry - mvlisLNextQ;

}

}

Figure 9. Function translate from the IGES to STEP translator

5.3 Databases

STEP provides the definition of product information, but it does not define how the

data are stored. Some applications will rely on exchange files, others may require

relational databases, and yet other STEP applications may use an object-oriented

database.

The implementation of a database is not the target of the standardization effort.

Within the Testbed, however, the conceptual data modeling and validation

activities need access to a data storage and query capability. Consequently, storage

tools have been investigated. At present, a limited SQL-based implementation of a

STEP database has been developed. The SQL statements to generate the database

tables were directly translated from Express using the Fed-X parser.

An object-oriented database implementation of STEP is being considered for the

Testbed, but this effort is currently limited by the lack of an object-oriented

equivalent of the SQL standard There is interest in STEP among object-oriented

database vendors, and several vendors are investigating approaches to

implementing STEP in their databases.

5.4 Process Planning Tool

The STEP model has incorporated many of the features of a process planning

language called .ALPS (A Language for Process Specification) [Catron&RayPO]

,

w'hich has been developed at NIST. An Express language based conceptual model

for ALPS has been translated into C++ usingfedexjplus and the resulting classes

are being used with SCL as pan of a C++ implementation of a shop floor controller.

Future plans for this project include extending the exchange mechanism of SCL to

store the process work plans in an object-oriented database.

The NIST STEP Class Library Page 17

6.0 Summary

7.0

The existing version of SCL only partially meets the needs of a class library for

implementing or testing STEP. Several of the significant tasks that will be

addressed in the future development of SCL are examined below.

SCL has not addressed enforcement of some of the constraints on STEP entities.

Without enforcement of these constraints, the semantics of STEP will not be fully

enforced by the library. The most difficult challenge in constraint checking will be

in implementing the rules and where clauses. The current plans for implementation

call for a virtual member function, named STEPvalidate , in the STEPentity class.

For each entity class in the STEP Schema Class Library a specialized version of

STEPvalidate would be generated to enforce the constraints of the entity.

The mapping of inclusive subtypes from Express into C++ must also be resolved.

While the C++ inheritance model is sufficient for representing generalization

relationships [Smith&Smith77] where the subtype declarations are all mutually

exclusive, it does not directly support the type of inheritance representation found

in the inclusive subtype construct. Another method must be developed for dealing

with this construct

Functions and procedures from the Express language will be mapped into C++ in a

future release of SCL.

The existing implementation of SCL only provides an exchange protocol for STEP
data. Future releases may incorporate a database system, an SDAIS class

implementation, and a shared memory implementation.

In the long term it would be helpful to further develop the STEP Schema Classes

themselves by adding functionality which, although useful and necessary to an

application, is not directly derivable from a specification written in Express. For

example, a move function could be added to the Geometry class to relocate it in

space. This function would be generally applicable to any object of this type.

Conclusion

An alpha version of the STEP Class Library has been used in several prototype

applications. This version meets many of the interface requirements of the draft

specification of STEP. The results of this proof-of-concept development effort

demonstrates that C++ provides an effective implementation mechanism for STEP
and that the library mechanism developed for this project provides a manageable

development tool. The project will proceed with plans to use SCL as the basis for

tools in the Testbed, application prototypes, and a reference implementation.

Page 18 The NIST STEP Class Library

References

[Alte88a]

[Alte88b]

[ANSI86]

[Bloom89]

[Briggs90]

[Catron&Ray90]

[Clark90]

[Cox87]

[Ellis&Strou90]

[Fowler90]

[Goldberg85]

[Kim89]

[MeyerS 8]

[Mitch90]

[NCGA90]

Altemueller, J., The STEP File Structure . ISO TCI 84/SC4/WG1
Document N279, September, 1988.

Altemeuller, J., Manning from Express to Physical File Structure .

ISO TC184/SC4/WG1 Document N280, September, 1988.

American National Standards Institute, Database Language SOL.

Document ANSI X3. 135-1986.

Bloom, H. The Role of the National Institute of Standards and

Technology as it Relates to Product Data Driven Engineering.

NISTTR 89-4097, National Institute of Standards and Technology,

Gaithersburg, MD, April 1989.

Briggs, D., et al., STEP Data Access Interface Specification . ISO
TC184/SC4/WG1/SG3 Document N499, June, 1990.

Catron, B., and Ray, S., ALPS - A Language for Process

Specification. International Journal of Computer Integrated

Manufacturing, special issue on Process Planning and Design for

Manufacture, expected November 1990.

Clark, S.N.. Fed-X: The NIST Express Translator . NISTTR 90-4371,

National Institute of Standards and Technology, Gaithersburg, MD.
July 1990.

Cox, B. J., Object-oriented programming . Productivity Products

International, Addison-Wesley Publishing Company, 1987.

Ellis, M., and Stroustrup, B., The Annotated C++ Reference

Manual . Addison-Wesley Publishing Company, 1990.

Fowler, J., STEP Production Cell, NISTTR, National Institute of

Standards and Technology, Gaithersburg, MD, forthcoming.

Goldberg, A. and Robson, D., Smalltalk- 80: The Language and its

Implementation . Addison-Wesley, Reading, MA, July, 1985.

Kim, Wc and Lochovsky, F., eds., Object-Oriented Concepts.

Databases, and Applications. ACM Press, NY, 1989.

Meyer, B., Object-Oriented Software Construction. Prentice Hall,

Englewood Cliffs, NJ, 1988.

Mitchell, M., Validation Testing Systems . NISTTR, National

Institute of Standards and Technology, Gaithersburg, MD,
forthcoming.

National Computer Graphics Association, IGES / PDES
Organization Reference Manual . July 1990.

The NIST STEP Class Library Page 19

[Scheifler88]

[Schenck90]

[Smith&Smit77]

[Smith88]

[Smith89]

Scheifler, R., Gettys, J., and Newman, R., X Window System: C
Library and Protocol Reference. Digital Press, Bedford, Mass, 1988.

Schenck, D., ed., Information Modeling Language Express:

Language Reference Manual. ISO TC184/SC4/WG1 Document
N466, March 1990.

Smith, J.M., and Smith, C.P., Database abstractions: aggregation

and generalization . ACM Transactions on Database Systems, pp.

105-133, vol. 2, no.2, 1977.

Smith, B., and Rinaudot, G., eds., Product Data Exchange

Specification First Working Draft, NISTIR 88-4004, National

Institute of Standards and Technology, Gaithersburg, MD,
December 1988.

Smith, B., Product Data Exchange: The PDES Project. Status and

Objectives .. NISTIR 89-41654, National Institute of Standards and

Technology, Gaithersburg, MD, September 1989.

Page 20 The NIST STEP Class Library

J

NIST-1 14A U.S. DEPARTMENT OF COMMERCE
(REV. 3-89) NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATA SHEET

1. PUBLICATION OR REPORT NUMBER

NISTIR 4411
2. PERFORMING ORGANIZATION REPORT NUMBER

3. PUBLICATION DATE

SEPTEMBER 1990

4. TITLE AND SUBTITLE

The NIST STEP Class Library (STEP into the Future)

5. AUTHOR(S)

McLay, Michael J. , Morris, Katherine C.

6. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURG, MD 20899

7. CONTRACT/GRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)

10.

SUPPLEMENTARY NOTES

DOCUMENT DESCRIBES A COMPUTER PROGRAM; SF-185, FIPS SOFTWARE SUMMARY, IS ATTACHED.

11.

ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBLIOGRAPHY OR
UTERATURE SURVEY, MENTION IT HERE.)

This paper describes a C++ class library that implements the
Standard for the Exchange of Product Model Data (STEP) . The STEP
class Library (SCL) is under development at the National Institute
of Standards and Technology as part of the National PDES Testbed
and provide the core set of STEP functions for tools that are used
to validate the STEP information models and for STEP based
application prototypes. The library also lowers the economic
barrier to developing STEP based applications. The current version
of the library provides a STEP compliant file exchange mechanism,
consequently, users of the class library will not have to create
an input/output mechanism for STEP.

The paper provides an introduction to STEP and the specification
language. Express, in which it is written. The supporting classes
that provide the STEP compliant input/output mechanism and the
mapping between the Express specification and the C++ classes are
described. The paper concludes with descriptions of some
applications that use the class library and a discussion of future
directions for the class library.

12.

KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITAUZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

C++; CAD; CALS; CAM; CAPP; Core Library; Data Exchange Standards;
Express Language; IGES; National PDES Testbed; PDES; SCL

13. AVAILABILITY 14. NUMBER OF PRINTED PAGES

X UNLIMITED 23
FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON, DC 20402.

15. PRICE

A02

JL_ ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFIELD, VA 22161.

ELECTRONIC FORM

IR 4412

UNAVAILABLE FOR BINDING

